

AIM 2020 Challenge on Video Temporal Super-Resolution

Sanghyun Son, Jaerin Lee, Seungjun Nah, †Radu Timofte, Kyoung Mu Lee

Department of ECE, ASRI, SNU, Korea †CVL, ETH Zurich

August 28th, 2020

Recording High-Speed Videos

- Hardware requirements
 - Fast processor
 - Large & fast storage

- Visual quality degradation
 - Low effective resolution (line skips)
 - High compression
 - Short exposure & high noise

Large & Fast storage

Bayer sensor full pattern

Line skipping at readout

GoPro Hero4 240 fps

Video Frame Interpolation

Goal

Enhance temporal smoothness by interpolating frames

t = 0.25

Challenges

- Real-world motions are highly complex
- Efficient algorithms are required to handle thousands of frames

$$t = 0.5$$
 $t = 0.75$

REDS_VTSR Dataset

- Real-world dataset for AIM 2019 and 2020 VTSR Challenges
 - Strong dynamics with nonlinear motion
 - Diverse scenes and locations
 - Provides 15, 30, 60 fps videos for the same scene
 - High-quality, 1280×720 (HD) resolution

Zoo, Korea

Old Village, Korea

Street, Turkey

Harbor, Turkey

Uphill, Germany

VTSR Datasets: Quantitative Comparison Seoul National University Computer Vision Lab Seoul National University

Dataset	Resolution	fps	#Sequences	#Frames	Note				
For Training									
YouTube clips		Varying fps	-		Collected from YouTube				
UCF101	Varying resolutions		13,320	-					
Vimeo-90k			73,171	219,513	Triplet dataset				
KITTI raw			56	16,951					
GoPro (Nah <i>et al</i> .*)	1280×720 (HD)		33	3,214	Captured by GoPro 4				
DAVIS 2016+2017	720×480 (SD)		200	13,914					
REDS_VTSR	1280×720 (HD)	Maximum 60 fps	240	43,200	Captured by GoPro 6				
For Evaluation (Validation + Test)									
Middlebury		Varying fps	8	58					
THUMOS 2015			5,613	-					
SlowFlow	Varying resolutions		46	-	Captured by TS5Q camera				
Sintel			19	-	Synthetic				
HD			11	-					
REDS_VTSR	1280×720 (HD)	Maximum 60 fps	60	10,800	Captured by GoPro 6				

^{*}Nah et al., "Deep Multi-scale Convolutional Neural Network for Dynamic Scene Deblurring," in CVPR 2017.

AIM 2020 VTSR Challenge

Goal

- Encourage development of the state-of-the-art Video Temporal Super-Resolution (a.k.a. frame interpolation) algorithm
- Compare various methods in a unified environment

Task

15 fps video → 30 fps video
 → 60 fps video

AIM 2020 VTSR Challenge

Evaluation

- 240 training + 30 validation sequences provided (with ground-truth)
- Tested on disjoint 30 sequences (no ground-truth provided)

Metrics

- PSNR / SSIM
- Reproducibility / Runtime (for reference)
- LPIPS* (experimental)
 - Reference-based perceptual metric
 - Shows better correlation with human perception

AIM 2020 VTSR Challenge

Challenge schedule

- May 1st, 2020: Development phase starts
- July 10th, 2020: Testing phase starts
- July 17th, 2020: Testing phase finishes
- July 19th, 2020: Final rank announcement

Participants

- 68 participants in the CodaLab
- 5 teams submitted their final solutions (one withdrawn)

Review: AIM 2019 VTSR Challenge

The winner: Quadratic Video Interpolation (QVI)

from the **SenseSloMo** team

$$f_{0 \to t} = \frac{f_{0 \to 1} + f_{0 \to -1}}{2} t^{2} + \frac{f_{0 \to 1} - f_{0 \to -1}}{2} t$$

AIM 2020 VTSR Challenge: Methods

- XPixel (Challenge Winner)
 - Enhanced Quadratic Video Interpolation
- KAIST-VICLAB
 - Quadratic Video Frame Interpolation with Multi-frame Synthesis Network
- BOE-IOT-AIBD
 - Multi Scale Quadratic Interpolation
- TTI
 - STARnet*
- Top 3 methods are based on the QVI model!

All values are reproduced by challenge organizers

15 fps → 30 fps	PSNR↑	SSIM↑	LPIPS↓*	Reproducibility	Runtime**
XPixel (Winner)	24.78	0.7118	0.268	0	12.4s / frame
KAIST-VICLAB	24.69	0.7142	0.222	О	1.5s / frame
BOE-IOT-AIBD	24.49	0.7034	0.249	0	1.0s / frame
TTI	23.59	0.6720	0.289	О	6.5s / frame
QVI (AIM 2019 Winner)	24.56	0.7065	-	0	-

15 fps → 60 fps	PSNR ↑	SSIM↑	LPIPS↓*	Reproducibility	Runtime**
XPixel (Winner)	25.69	0.7425	0.214	0	-
KAIST-VICLAB	25.61	0.7462	0.181	0	-
BOE-IOT-AIBD	25.27	0.7269	0.230	0	-
ПІ	24.36	0.6995	0.253	0	-
QVI (AIM 2019 Winner)	25.47	0.7383	-	0	-

- Frames with high performance variances
 - One shows superior performances than the others

Seq. 16 Frame 358 15 fps → **60 fps**

GT (PSNR/LPIPS)

XPixel (32.64/0.072)

KAIST-VICLAB (22.42/0.242)

BOE-IOT-AIBD (23.86/0.254)

TTI (30.64/0.168)

- Frames with high performance variances
 - One shows superior performances than the others

Seq. 19 Frame 182 15 fps → **60 fps**

GT (<u>PS</u>NR/LPIPS)

XPixel (29.33/0.171)

KAIST-VICLAB (30.19/0.143)

BOE-IOT-AIBD (27.89/0.197)

TTI (20.30/0.226)

- Frames with high performance variances
 - One shows superior performances than the others

Seq. 29 Frame 134 15 fps → **60 fps**

PSNR vs. LPIPS (Experimental)

Seq. 7 Frame 358 15 fps → **60 fps**

XPixel (27.04/0.085)

GT (PSNR/LPIPS)

KAIST-VICLAB (25.67/**0.070**)

- Failure cases
 - Still have rooms for improvement!

GT (PSNR/LPIPS)

XPixel (23.90/0.309)

KAIST-VICLAB (20.96/0.327)

BOE-IOT-AIBD (21.80/0.270)

TTI (18.72/0.341)

- Failure cases
 - Still have rooms for improvement!

The Winning Method

Enhanced Quadratic Video Interpolation from the **XPixel** team

Yihao Liu, Xie Liangbin, Li Siyao, Wenxiu Sun, Yu Qiao, and Chao Dong

onsors

Mank you

https://data.vision.ee.ethz.ch/cvl/aim20/

Contact:

(AIM 2020 VTSR official) aim2020.vtsr@gmail.com (Sanghyun Son) sonsang35@gmail.com