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INTRO & BACKGROUND

Dynamic Scene Deblurring

Dynamic scenes contain various motion blurs:
moving objects, camera shake, depth variation, etc.
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L = Mp(B)

How can we better optimize deblurring models?

\ Related Works: Loss Functions

L1or MSE Loss

Compute L1 distance between output/target
L =Mp(B;0p) — rginHL — S|

D
0. model parameters, S: sharp image

Focuses on PSNR, color correctness [Tao et al., CVPR 2018]
* Tends to predict blurry solution [Gao et al., CVPR 2019]

Compute feature distance between output/target
min||L — S|| + A|[VGG(L) — VGG ()]
D

[Johnson et al., ECCV 2016]
[Kupyn et al., CVPR 2018; 2019]

Uses visual recognition feature
Better than L1, still not perfect

Adversarial Loss

Joint optimization with L/S discriminator

min“L — S|| + AL, gy
Op

[Nah et al., CVPR 2017]
[Kupyn et al., CVPR 2018; 2019]
[Zhang et al., CVPR 2020]

* Tendsto produce sharper texture
Artifacts are also introduced

PROPOSED METHOD

We can remove motion blur from learning.

uestion
Q But can we also reconstruct true blur from a sharp image?

Observation: Clean Images are Hard to Reblur
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infinitely many possibilities

Supervised/Self-Supervised Reblurring Loss
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Try to deblur image well

By making it hard to reblur
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EXPERIMENTS

Qualitative Comparison w/ SoTA
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Ablation: Reblurring Loss, Test-Time Adaptatlon

Blur

Perception-Distortion Trade-Off

£'1 =+ EReblur,n2 + TTA step 20
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I EReblur — ||MR(L) — MR(S) |
" If
Reblur= MR(L) — L
Mg (5)
- ~ [ Self-supervised Adaptation ]
Test-time Sharp 4 )
Adaptation = MD(B)
Deblur fOl"LZON—ldO
i h ' = Mp (B)
ﬁls‘gllz)riur ||MR(MD(B)) — Li”
| Bty Update 0p by Vg, L3 and p.
N J | LN = Mp (B).
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PSNR vs LPIPS PSNR vs NIQE
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Supervised Reblurring Loss improves PSNR vs LPIPS, NIQE trade-off
Self-Supervised Reblurring Loss puts more weight on perceptual quality




