Semantic Draw: Towards Real-Time Interactive Content Creation from Image Diffusion Models

Jaerin Lee, Daniel Sungho Jung, Kanggeon Lee, Kyoung Mu Lee ECE & ASRI & IPAI, Seoul National University

INTRODUCTION

TL;DR

By marrying previously incompatible region-based diffusion & fast schedulers, Semantic Draw turns any image diffusion model into a live paintbrush tool that let you brush semantic intent—not just color pixels.

(3) **Ours (59s**)

- Current region-based image diffusion pipelines do not scale to large canvas with many regional prompts.
- □ Naïvely adding acceleration modules (LCM, SDXL-Lightning, Flash-SD3, Hyper-SD etc.) does not work because they are not developed in aware of each other.
- □ This limits the practical power of BOTH works: regional control/acceleration.

Main Contributions

- ✓ We establish compatibility between region-based image diffusion pipelines & accelerated schedulers, speeding up the generation up to x50 faster with higher stability ready for real-time applications.
- ✓ We propose multi-prompt stream batch architecture to maximize the throughput & hide the latency of generation.
- ✓ Based on this, we propose a new drawing paradigm, "semantic drawing," for any image diffusion pipelines.

(a) Any image diffusion pipeline (green) is augmented with compatibility module.

- Bootstrap: In the early stages (1-3), the intermediate latent from each prompts is masked by its companion masks. Each masked latents are centered to exploit object-centeredness s of diffusion models. After denoising, foregrounds are <mark>uncentered</mark> and <mark>merged</mark>.
- Scheduler Compatibility: Euler-type (only denoising) and Langevin-type (noise is added to each step) samplers are treated equally by delaying the noise addition step after merge.

Multi-Prompt Stream Batch

(b) Streaming by aggregating the regional latents of different timesteps

Pipelining: Batchify latents of foreground & background prompts in different timesteps into a single batch to maximize throughput.

Cache text embeddings to minimize redundancy.

□ Near real-time generation for interactive content creation.

Main Results

Method	Sampler	$FID\downarrow$	IS \uparrow	$\text{CLIP}_{fg}\uparrow$	$\text{CLIP}_{\text{bg}}\uparrow$	Time (s) \downarrow	Method	Sampler	$FID\downarrow$	$\mathbf{IS}\uparrow$	$\text{CLIP}_{fg}\uparrow$	$\text{CLIP}_{\text{bg}}\uparrow$	Time (s) \downarrow
SD1.5 (512 \times 512) MultiDiffusion (Ref.)	DDIM [47]	70.93 🗕	16.24 🗕	24.09	27.55 😐	14.1 •	SDXL (1024×1024) MultiDiffusion (Ref.)	DDIM [47]	73.77 😐	16.31 😐	24.16	28.11 •	50.6 ●
MultiDiffusion (MD)	LCM [31]	270.55 ●	2.653 🔵	22.53 🔵	19.63 🔵	1.7 •	MultiDiffusion (MD)	EulerDiscrete [18]	572.95 🔵	1.328 🔵	21.02 ●	17.36 🔵	4.3
SemanticDraw (Ours)	LCM [31]	93.93 🔍	14.12 🔍	24.14 😐	24.00	1.3 🗕	SemanticDraw (Ours)	EulerDiscrete [18]	84.27 🜑	15.04 🔍	24.19 😐	24.22 •	3.6 🗕
Method	Sampler	$FID\downarrow$	IS ↑	$\text{CLIP}_{\text{fg}}\uparrow$	$\text{CLIP}_{\text{bg}}\uparrow$	Time (s) \downarrow	Method	Sampler	$FID\downarrow$	IS \uparrow	$\text{CLIP}_{\text{fg}}\uparrow$	$\text{CLIP}_{\text{bg}}\uparrow$	Time (s) \downarrow
SD1.5 (512 \times 512) MultiDiffusion (Ref.)	DDIM [47]	70.93 •	16.24 😑	24.09	27.55 •	14.1 •	SD3 (1024 \times 1024) MultiDiffusion (Ref.)	FlowMatch [9]	166.42 •	8.517	20.66	16.39	46.3 •
MultiDiffusion (MD)	Hyper-SD [40]	168.34 ●	10.12 ●	20.08 ●	15.90 🔵	1.7 •	MultiDiffusion (MD)	FlashFlowMatch [7]	209.36	5.347 •	19.83 ●	14.48 🔵	4.0
SemanticDraw (Ours)	Hyper-SD [40]	98.60	14.90	24.48 😐	23.31	1.3 •	SemanticDraw (Ours)	FlashFlowMatch [7]	79.2 😐	17.41 😐	23.59 😐	27.83 😐	3.2 •

• Ours enjoy speedup of the acceleration module while maintaining quality. • Our method is general; it can be applied to any large-scale diffusion pipeline.

Ablation Study

+ Quantized masks (

New wine in new wineskin; New powerful tool (diffusion models) deserves new applications. Thank you for coming by! Please also have a look at our project page! \rightarrow

EXPERIMENTS

	$FID\downarrow$	$\text{CLIP}_{\text{fg}} \uparrow$	$\text{CLIP}_{bg}\uparrow$	Method	Throughput (FPS)	Relative Speedup
	270.55	22.53	19.63	Baseline [5]	0.0189	×1.0
ng	80.64	22.80	26.95	+ Stable Acceleration	0.183	×9.7
otstrapping	79.54	23.06	26.72	+ Multi-Prompt Stream Batch	1.38	×73.0
$\sigma = 4$)	78.21	23.08	26.72	+ Tiny AutoEncoder [6]	1.57	× 83.1

Multi-prompt stream batch architecture allows us sub-second generation speed; ready to be used in real-time applications.

Mask Consistency Breakdown

• We gain enhanced mask consistency & harmonization in addition to speedup.

Take Home Message

