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O Multi-prompt stream batch architecture allows us sub-second generation
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speed; ready to be used in real-time applications.
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higher stability ready for real-time applications. Ta ke Home Message
v' We propose multi-prompt stream batch architecture to maximize the  Bootstrap: In the early stages (1-3), the intermediate latent from each prompts is masked Q Pipelining: Batchify latents of foreground & background . . . .
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for any image diffusion pipelines. 1 Scheduler Compatibility: Euler-type (only denoising) and Langevin-type (noise is added to 1 Cache text embeddings to minimize redundancy. g
each step) samplers are treated equally by delaying the noise addition step after merge.  Near real-time generation for interactive content creation. Thank you for coming by! Please also have a look at our project page! > [m]




