
Adaptive Dataset Sampling by Deep Reinforcement Learning

Jaerin Lee*

Abstract— In most of the deep learning applications, the
training dataset is partitioned into mini-batches before being
fed into the trained network. Although the size and the quality
of datasets have been continuously enhanced, sampling strategy
of which have drawn much less attention of the communities.
We argue that the generalization capability of a trained model
can be improved by modifying the order of the samples of
the training dataset. In this work, we propose an adaptive
sampler that is aware of history of previous samples and the
state of the neural network being trained. We utilize the recent
advances of deep reinforcement learning to formalize a Markov
Decision Process (MDP) of dataset sampling, and design a
stochastic sampling policy using recurrent neural networks.
Our method using adaptive sampler is both model-agnostic
and task-agnostic, i.e., it can be applied to any deep supervised
learning framework. We demonstrate the effectiveness of our
adaptive sampler in CIFAR-10 image classification benchmark.
An image classifier model trained with our sampler shows better
test set accuracy than the one equipped with a random or a
sequential sampler.

I. INTRODUCTION

Deep learning is a data-driven framework in statistics
and machine learning that extensively uses massively multi-
parameter nonlinear function approximators to model the
structure of data. These models, also referred to as artificial
neural networks (ANNs), have been played a key role in
recent advances in computer vision [10, 14], in natural
language processing (NLP) [5, 20, 31], as well as in re-
inforcement learning [9, 17, 23]. A typical deep learning
methodology is to fit a delicately designed ANN model with
a given set of data by running a gradient-based iterative
algorithm over a scalar objective.

In most of the applications, deep models are notoriously
data-hungry and training them requires tremendous amount
of data. For instance, ImageNet dataset for image classifi-
cation task [21] contains one million images and exceeds
130 GB in total. Mahajan et al. [16] report that the same
classifier model can achieve even better accuracy when
trained with 3.5 billion images. On the other hand, GPT-2
[20], a state-of-the-art language model for NLP tasks, is
trained with 8 million documents with a total of 40 GB of
corpus, yet the authors of [20] report that the model is still
suboptimal and requires more data for better performance.

Commercial off-the-shelf hardware that runs deep learning
algorithm has limited memory capacity. Only a small fraction
of the dataset can reside in the machine at the same time, con-
sidering the size of millions of parameters of a deep model

*The author is with the Department of Electrical and Com-
puter Engineering, Seoul National University. Student ID: 2019-20239.
ironjr@snu.ac.kr

†This work was conducted as a final project of Stochastic Control and
Reinforcement Learning, Spring 2020 at Seoul National University.

Adaptive
Sampler

Dataset

}
State Observation
Feedback Loop

Learner
(Classifier)

Fig. 1. Overview of our adaptive sampling framework. In each training
iteration, the active sampler samples a mini-batch of instances from the
given dataset and feed these into the learner network. The sampler receives
the current state of the learner network and keeps track of that state and
the sequence of previously sampled items. The learner network is trained
independently to the sampler. Therefore, this framework can be used with
any supervised deep learning application.

and their gradients. Therefore, it is natural to partition the
dataset into small batches of instances, and train the network
with a single batch at a time. Introducing mini-batches adds
randomness to the gradient update; however, the convergence
is still guaranteed by the stochastic approximation theory [3].

There have been continuous improvements in building
larger and of higher quality datasets [1, 20, 21] in the field of
deep learning. However, there are seldom a discourse on the
significance of the sampling techniques. Choosing a mini-
batch from a given dataset is almost always done by random
shuffling [10, 17, 20]. In this work, we emphasize that
determining how to sample is a key to provide generalization
capability of the model, and to stabilize the training.

There are both empirical [26] and theoretical [19] evidence
that the variance of the stochastic gradient of a mini-batch
is inversely proportional to the size of the batch. Let θt be a
network parameter at iteration t. Let Bt be a sampled mini-
batch at t. Let l(·) be a true scalar loss function and let lBt

(·)
be a scalar loss function calculated on the batch Bt. The
gradient ∇θl(θt) and ∇θlBt(θt) have a following statistical
relationship. The stochastic gradient estimator is an unbiased
estimator for the true gradient, i.e.,

EB{∇θlB(θt)} = ∇θl(θt). (1)

The variance of the stochastic gradient is defined as

VarB(∇θlB(θt)) := EB‖∇θlB(θt)‖2−‖EB∇θlB(θt)‖2. (2)

Then, the ratio between the variance of the gradient from
a mini-batch and that from the entire dataset is inversely
proportional to the size of the batch [19, 26], i.e.,

VarB(∇θlB(θt)) ∝
|D|2

|B|
Var(∇θl(θt)), (3)

where D is the training dataset. The randomness of the right-
hand side comes from θt, which is derived from the sequence
of mini-batches sampled up to iteration t− 1.

CIFAR-10 [13] is a widely used benchmark in computer
vision containing 50k training and 10k test images. In typical
applications [10], the dataset is partitioned into mini-batches
of size 128. Plugging the numbers in Eq. (3) gives a factor of
2.0× 107. The huge size indicates that reducing the variance
of the gradient from each mini-batch can help the stability
of the training process. Introducing prior knowledge is an
effective tool to leverage between bias-variance tradeoff in
Bayesian statistics [8].

From this intuition we propose a novel adaptive sampler
that is aware of both the state of the trained network and the
sampling history when selecting the next mini-batch. Our
method is model-agnostic, as well as task-agnostic, meaning
that our sampler can be used in any supervised deep learning
application regardless of the dataset, the model, the loss and
the optimization algorithm. Our contributions are three-fold.
• We quantitatively show that the dataset sampling strategy

is essential in reducing the generalization error in deep
learning framework.

• We design the adaptive sampler using deep reinforcement
learning. To the best of our knowledge, this is the first
attempt to use such technology in the sampling of data
for training the neural networks.

• We demonstrate the effectiveness of our sampling tech-
nique in practical deep learning problem. Our method
outperforms random or sequential sampling techniques,
highlighting the importance of history-aware sampling in
training a deep model with stochastic approximation.

II. RELATED WORK

A. Active Sampling in Machine Learning

Active sampling is a long-used technique [24] where a
trained network tries to pose queries of data to learn in the
next steps of the optimization algorithm. Its effectiveness
has been tested on various machine learning problems. The
most recent ones use active sampling to select a set of
tasks in a multi-task reinforcement learning problem [25],
to train a language model [2], or to perform active learning
in image classification task [15]. However, these algorithms
use predefined handcrafted rules to fetch the required data.
Gal et al. [7] take a Bayesian approach to perform active
learning for an image recognition task and reported a good
performance gain. In this work, we suggest to exploit the
recent advances of reinforcement learning to the active sam-
pling problem in order to train a deep model. However, we
have found that the name adaptive sampling better suits with
our method instead of active sampling. The term adaptive
emphasize the model-agnostic nature of our methodology.

B. Dataset Manipulation

Since the dataset is one of the major components con-
sisting a deep learning framework, dataset manipulation
is a readily investigated technique by deep learning com-
munities. It has been discovered that the trained artificial

neural networks can be exploited by perturbing an input
by certain noises [27]. Many other works propose how to
attack neural networks by modifying inputs, or to defend
from those attacks by manipulating the training dataset [4].
Recently, dataset regularization strategies such as mixture
[34], regional dropout [6], or performing both operations at
the same time [33] are proposed to reduce the generalization
error of convolutional neural networks. Dataset distillation
[32] shows that the gradients with respect to the entire dataset
can be emulated by extremely small number of samples.
These are the examples of direct manipulation of the data
samples to achieve better regularization or exploitation of
the vulnerability of the network being trained. Here, we do
not modify data points. Instead, by changing the order of
the training data samples, we achieve better generalization
of the model.

C. Reinforcement Learning in Computer Vision

Although computer vision and reinforcement learning have
different origins, there are number of works that merge
the ideas and benefits from both fields. In computer vision
communities, reinforcement learning is used for search tasks
on which gradients are hard to obtain. In network architecture
search (NAS) [18, 28, 35, 36], a recurrent policy network
seeks for an optimal structure for a neural network to solve
a specific task on a certain dataset. The policy is trained with
various reinforcement learning algorithms policy gradient
methods [22]. Our method receives current performance of
the trained network, which is a similar feedback obtained
by controllers of NAS algorithms. Therefore, the reward and
advantage function is borrowed from such works, especially
from Pham et al. [18].

III. PROBLEM STATEMENT

A deep learning framework for supervised learning con-
sists of four components: a dataset D, a function approx-
imator Φ(· ; θ) parametrized by θ, a scalar loss function
l(·), and an optimization algorithm A. The labeled dataset
D := {(Xi, yi) | i = 1, 2, . . . , N} is a finite set of pairs of
data points Xi and corresponding labels yi. We call the
function approximator Φ(t) : X → ` at each iteration t as
the learner network. It maps each data point Xi ∈ X to
a fixed-length logit vector l

(t)
i ∈ `. It has internal state

fully characterized by its parameters θt at iteration t. In
practice, the stochastic gradient-based optimization algorithm
A tries to minimize the loss l with respect to the learner
network parameter θ. At the beginning, θ is initialized with
an arbitrary value θ ← θ0. At iteration t of the algorithm A,
a sampler S samples a mini-batch Bt of instances from the
dataset D. The parameter θ is updated by the gradient of the
loss, estimated by the samples in the batch, i.e.,

θt+1 ← θt − αt∇θlBt
(θt), (4)

where αt is a learning rate determined by A.
We model the adaptive sampler Sada as a parametrized

function Sada(· ; θs,t). In the problem of optimal sampling, it
is required to find an optimal parameter θ∗s for the sampler

Dataset

}
State Observation
Feedback Loop

History
Logger

Feature
Extractor

Adaptive Sampler

Policy Network

Feature
Bank

Summary
Buffer

Learner
(Classifier)

Reward
Buffer

Sa
m

pl
e

M/A

rt
btAt

Fig. 2. Architecture of our adaptive sampler. The adaptive sampler consists of three networks: a feature extractor, a history logger, and a policy
network. Feature extractor maps the entire dataset into a set of fixed-length feature vectors prior to the training of a model. Every training iteration of
the learner network, stochastic policy network generates logits for each available training set index. Then, the items for the next mini-batch is sampled
from the probabilistic distribution generated by the logits. Feature vector of previously sampled samples and the output logit from the learner network is
concatenated into a state vector. The history logger keeps track of this states with a recurrent neural network to summarize the recent history of sampled
items and activations of the learner. This history summarization is then fed into the policy network for next batches of items. Reward signals for the policy
update is calculated from the validation loss of the learner network, which is occasionally obtained by sampling from the separate validation set.

Sada that draws the sequence of samples B1,B2, . . . ,BT−1
from the training datset D that minimizes the generalization
error of the learner network Φ. The adaptive sampler should
utilize the information of the previous and current state of the
learner Φ, the history H of sampled items, and the training
dataset D. Therefore, our goal is to learn a sampler Sada with
a history-dependent policy π to maximize the generalization
capability of a trained network Φ.

We model this problem as a finite-horizon, discounted
Markov Decision Process (MDP)M = (S,A,P, r, γ). Here,
S is a state space determined by the state of the learner
Φ and the sampling history H. The action space A is
defined as a set of all indices of the dataset D, i.e., if
N := |D|, then A = {1, 2, . . . , N}. A state transition proba-
bility P : S ×A → P(S) is determined by the deep learning
framework (D,Φ, l, A). A reward function r : S ×A → R
carries the information of current generalization error of the
learner network and is rigorously defined in Sec. V. Finally,
γ ∈ (0, 1] is a discount factor.

The optimal stochastic policy π : S → P(A) is determined
by solving the maximization problem of the expected cumu-
lative reward

J(π) = Eπ
[
T−1∑
t=0

γtr(st, at)

]
. (5)

In this work, we utilize a policy gradient method to solve
the problem online.

IV. DESIGN CONSIDERATIONS

There are several desiderata need be concerned before
resolving the structure of the sampler. The first and the
most important one is the appropriate approximation of the
state space. As mentioned in Sec. III, the state space in our
problem is a set of pairs (θt,Ht), where t is the index of the
learner’s training iteration. The sampling history Ht is a col-
lection of actions having been executed from the beginning

of the training sequence, i.e., Ht := {a0, a1, . . . , at−1}. To
keep track of this growing sequence, some types of recurrent
modules that summarize a sequence of varying length into a
fixed-length vector are required. Moreover, the state θt of the
learner network Φ(·; θt) at iteration t is often a set of millions
of parameters correlated through complex interrelationships.
It is practically infeasible to track the changes of all the
parameters of the learner network in the sampler. In the
simplest form, a deep model Φ can be viewed as a black-box
function with input/output interface. A proper approximation
of the state of such function is then a set of pairs of inputs
and respective outputs. Therefore, we introduce a recurrent
policy network that receives input items X1,X2, . . . ,X|B|
and output logits l1, l2, . . . , l|B| generated by the learner
Φ(· ; θt) at iteration t.

Secondly, indices of the items in the dataset rarely have
any semantic meaning. Hence, the history of indices have
little useful information to be used in our sampler; it is
best to use a sequence of items directly as the history of
samples. On the other extreme, each instance of the dataset
is generally too large and unstructured to be directly handled
in the submodules of the sampler. A feature extractor is,
therefore, introduced to summarize each item into a fixed-
length vector.

Although recurrent modules are necessary to store the
history into a compact form, information in these module
have limited lifetime [31]. Longer sequences are beneficial,
since they give more hints about the current state of the
learner; however, they also increase memory demand due to
the nature of the backpropagation algorithm. In situations
where stochastic approximation is desired, only a fraction
of the dataset can be tracked by the sampler. Therefore,
the sampler structure and the schedule of its policy update
are constrained by memory budget, and the hidden states
of the recurrent units are reset periodically. Update of the
sampler policy need be slower than the update of the learner

network, for the reward signal should properly reflect the
effect of changes the policy has made. Intermediate states
of the sampler are required to be buffered to support slow
gradient update of the policy network. Due to the same
memory constraint, the stored sampler states should be
cleared periodically.

V. ADAPTIVE SAMPLER DESIGN

A. Controller Design

Implemented as an iterator, at each call, the sampler
Sada returns an index of a single training example. The
sampler is called |Bt| times every training iteration of the
learner to fetch a mini-batch of samples. It receives learner’s
output logits of the current batch and have full access to
the training dataset D. The input/output interfaces of our
adaptive sampler makes the module model-agnostic and
also task-agnostic. The choice of the dataset sampler is
independent of the choice of the learner model. This does not
affect the overall training algorithm, since from the learner’s
perspective, only the order of the data samples changes. Our
adaptive sampler Sada has three major components: a feature
extractor φ, a history logger η, and a policy network π.
Feature Extractor. For each labeled instance (Xi, yi) ∈ D,
a feature extractor φ(·; θf) maps each data point Xi to a fixed-
length feature vector fi, i.e., fi := φ(Xi; θf). This feature
is used as a representative of the fetched index. However,
training a feature extractor in the sampler is redundant to the
training of the learner network. This increases the amount of
gradients to be stored for the policy update by a large margin.
Inspired by the work of Ulyanov et al. [29], we assume
that untrained convolutional neural network can be used for
a feature extractor of an image dataset. Thus, the feature
extractor φ is not updated after the initialization. Another
advantage of this setting is that the feature extraction can
be done prior to the entire learning sequence. We generate
the feature vectors for all the samples from the dataset to
construct a feature bank. The features required in the training
time can be queried to the bank.
History Logger. The history logger η(· ; θh) is a recurrent
neural network with internal hidden state hh,t at time t. The
module receives image feature of the currently fetched mini-
batch fBt

= (ft,1, ft,2, . . . , ft,|Bt|) and the corresponding logit
tensor lBt

:= Φ(XBt
; θt) generated by the learner network Φ

and returns a fixed-length summarization st+1, which acts as
the next state supplied to the policy network, i.e.,

st+1 = η(concat(fBt
, lBt

); θh). (6)

The history logger is implemented with two-layer LSTM
cells follewed by a single linear decoder.
Policy Network. The sampling policy π(·; θp) is a stochastic
policy implemented with a recurrent neural network with
hidden state hp,t at time t. In each call to the sampler,
the policy network receives a concatenation of the feature
vector of previously sampled item ft+1,i and the summary st
from the history logger. The output is a logit vector lπt+1,i+1

indicating the probability of selecting each training sample
for (i+ 1)-th item of batch Bt+1.

lπt+1,i+1 = π(concat(st, ft+1,i); θp). (7)

The sampling probability of the item aj ∈ A is given by the
categorical distribution generated from the logit lπt+1,i+1,

πt+1,i+1(aj |st, ft+1,i) := [softmax(lπt+1,i+1)]j . (8)

The policy network consists of a single linear encoder
followed by two-layer LSTM cell and a single linear decoder.
The output dimension of the decoder is the number of
available actions, i.e., the number of samples in the training
dataset D.

B. Reward and Advantage Functions

Our definition of an optimal sampler requires the same
performance metric as network architecture search [18, 35]
to generate reward signals: the validation loss of the learner
network. To evaluate the validation error throughout the
training phase, the original training set D is split into a
validation set Dval and a new training set Dtrain. Every
T1 iterations of the learner update, the learner network is
fixed and the sampler sequentially samples items from the
validation set. Validation loss l(t)val of the learner network is
calculated by the same loss function l used for training the
learner, and the ground-truth labels of the validation set. The
reward is calculated from the averaged validation loss.

rt := cr exp{−2l
(t)
val}, (9)

where, cr = 80 is a constant factor.
Using a single reward directly in the policy gradient update

leads to unnecessarily large variance [22]. Therefore, it is
common to define a baseline and calculate the advantage as
the difference between the current reward and the baseline
[30]. Since our policy network is intrinsically sequential, we
use moving average of the reward as the baseline.

bt := λbt−1 + (1− λ)rt. (10)

Here, λ = 0.9 controls the rate of decay of the received
reward. The advantage At at iteration t is calculated as,

At := rt − bt. (11)

We use Adam [12] optimizer to update our policy. Because
Adam optimizer is a stochastic gradient descent solver,
we define a policy loss to calculate the negative policy
gradient for gradient ascent. The final policy loss lπ is
composed of two terms: the inverse validation loss lπval, and
the regularization term R.

lπval,t = log πt(at|st) ·At(st, at),
Rt = −cH · πt(at|st) log πt(at|st),
lπt = −(lπval,t +Rt).

(12)

The regularization term R encourages the sampling distri-
bution to have high entropy in order to prevent neglecting
samples of the dataset. The constant cH = 1× 10−4 controls
the amount of regularization applied to the policy.

76

78

80

82

84

86

88

90

92

94

96

98

100

102

-10k 0 10k 20k 30k 40k 50k 60k 70k 80k 90k

training iterations of the learner

Training accuracy (%)

Active sampler, w/o feature extractor
Active sampler, w feature extractor
Random sampler, w/o replacement
Random sampler, w replacement
Sequential sampler

68

70

72

74

76

78

80

82

84

86

88

90

92

-10k 0 10k 20k 30k 40k 50k 60k 70k 80k 90k

training iterations of the learner

Test accuracy (%)

Fig. 3. Training and test accuracy of the classifier trained with different samplers. As in Table I the network trained with our adaptive sampler shows
the highest test set accuracy on CIFAR-10 benchmark. It is worth notable that random sampling with allowing replacement shows the highest accuracy gap
between training set and the test set, which is worse than the result from the same random sampler without replacement. This indicates that the sampling
order is more important than the long term distribution of the samples to reduce the generalization error.

VI. EXPERIMENT

A. Implementation Details

We demonstrate our adaptive sampler in the image classi-
fication task. We use 18-layer ResNet model [10] designed
for CIFAR-10 dataset [13] as the learner network. Network
architecture and related hyperparameters are brought from an
unofficial implementation1. The 50k training set of CIFAR-
10 dataset is split into 6.4k validation set and 43.6k training
set. Only this smaller training set is used for calculating the
gradient update for the learner network. Normalized training
and validation images are padded with 4 pixels to each
borders and randomly cropped to obtain 32 × 32 image
patches. The patches are then applied to a random horizontal
flip before the sampling. Training the learner network is done
with stochastic gradient descent solver. We use momentum
of 0.9 and weight decay of 5× 10−4. The learning rate is
fixed to 0.1. We stop the training after 80k iterations.

For the policy network, we use widths of features and
historical summaries to be 32. The feature extractor is a
four-layer convolutional neural network. Each convolution
in the feature extractor is followed by a batch normalization
[11] and a leaky ReLU with slope 0.2. All convolutions have
kernel size of 3 and stride of 2 except the front convolution,
which has stride of 1. Size of the hidden state of all the
recurrent units in the history logger and the policy network
is 32. Adam optimizer [12] with default hyperparameters
is used for training the sampler module. Both the history
logger and the policy network are trained; however, the
feature extractor is not trained and is fixed to the initial
state. We provide two different versions of the sampler, the
one with and the one without the feature extractor to see the
effectiveness of this settings. For the sampler without feature
extractor, we simply set all the components of feature in the
feature banks to one. Learning rate for the policy optimizer
is fixed to 3.5× 10−4. We evaluate the validation loss every
20 iterations of the training phase. The calculated rewards,
baselines, and advantages are kept in a fixed size buffer.

1https://github.com/kuangliu/pytorch-cifar

Fig. 4. Histogram of short-term distributions of the samples fetched
by our adaptive sampler. At first, the generated samples have skewed
distribution due to poor initialization of the policy network. In the late
stage of the training, the validation error becomes small, and therefore, the
entropy regularization term dominates the policy loss, resulting in more
uniform distributions. This can be confirmed from the results of Fig. 5.

Every 100 iterations of the training phase of the learner
network, the policy is updated for one step with five previous
rewards and advantages. After the policy update, we clear all
the buffers and reset the hidden state of the history logger and
the policy network as zero vectors for memory efficiency.

B. Quantitative Results

Table I shows the quantitative comparison between our
adaptive sampler and naı̈ve static alternatives. Our method
outperforms random sampling and sequential sampling in
terms of both training and test accuracy. The results can also
be seen in Fig. 3. The network trained with our adaptive
sampler not only achieves higher generalization capability,
but also shows less variance in the test accuracy, indicating
that the training process is also stabilized.

It is notable that random sampling with replacement fails
to generalize, while the same technique without replacement
performs better. This indicates that the sampling order of the
dataset is important in successful training of a deep model.
The long term distribution of samples is less significant

-15

-10

-5

0

5

10

15

20

25

0 10k 20k 30k 40k 50k 60k 70k 80k

Policy Loss

training iterations of the learner

Active sampler, w/o feature extractor
Active sampler, w feature extractor

Fig. 5. Policy loss over time. The graph shows that our policy objective
is well-posed and the sampler module is trained successfully.

TABLE I
RESULTS ON CIFAR-10

Sampling method Training acc. (%) Test acc. (%)

Random, w/ Replacement 96.64 79.85
Random, w/o Replacement 90.07 86.53

Sequential 90.07 86.60

Adaptive, w/o feature extractor 90.43 89.18
Adaptive, w feature extractor 90.33 89.02

in determining the network performance. Fig. 4 shows the
generated distribution of samples sampled from our policy
over time. Our adaptive sampling strategy generates uni-
form distribution of samples like the sequential and the
random sampling techniques. The results also suggest that
the long-term sampling distribution is less important than
the short-term sampling order. Lastly, the results shows that
the sequential sampling performs on par with the random
sampling, and this is because the original data indices are
shuffled well.

C. Feasibility of the Design

Fig. 5 shows changes of the policy loss during the train-
ing phase. Despite the seldom updates, the policy loss is
converged as the training proceeds. Unfortunately, however,
the existence of feature extractor does not increase the test
accuracy. The untrained module exhibits negative impact
to the generalization error. Therefore, in the future work,
application of transfer learning may be tried to alleviate the
issue.

VII. CONCLUSION

We emphasized the importance of sampling strategy in
training an artificial neural network in a deep learning frame-
work. We proposed a novel approach to the sampling of the
dataset. By deep reinforcement learning and the method of
policy gradient, we constructed an effective adaptive sampler
that is both model-agnostic and task-agnostic, and therefore,
is applicable to general data-driven machine learning prob-
lems. We demonstrated our method on image classifciation
benchmark, and shows clear improvements on both training
and, especially, test set accuracy. We also found out that
applying our method increases the stability of the trianing
process. This clearly demonstrates that history-dependent
sampling of data boosts the performance of a deep model.

REFERENCES

[1] S. Abu-El-Haija, N. Kothari, J. Lee, P. Natsev, G. Toderici, B.
Varadarajan, and S. Vijayanarasimhan, “YouTube-8M: A large-scale
video classification benchmark,” arXiv preprints, Sep. 2016. arXiv:
1609.08675 [cs.CV].

[2] Y. Bengio and J. Senecal, “Adaptive importance sampling to ac-
celerate training of a neural probabilistic language model,” IEEE
Transactions on Neural Networks, vol. 19, no. 4, pp. 713–722, 2008.

[3] D. P. Bertsekas and J. N. Tsitsiklis, Neuro-Dynamic Programming,
1st ed. Athena Scientific, Oct. 1996.

[4] A. Chakraborty, M. Alam, V. Dey, A. Chattopadhyay, and D.
Mukhopadhyay, “Adversarial attacks and defences: A survey,” arXiv
preprints, Sep. 2018. arXiv: 1810.00069 [cs.LG].

[5] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova, “BERT: Pre-
training of deep bidirectional transformers for language understand-
ing,” arXiv preprints, Oct. 2018. arXiv: 1810.04805 [cs.CL].

[6] T. DeVries and G. W. Taylor, “Improved regularization of convo-
lutional neural networks with Cutout,” arXiv preprints, Aug. 2017.
arXiv: 1708.04552 [cs.CV].

[7] Y. Gal, R. Islam, and Z. Ghahramani, “Deep Bayesian active learning
with image data,” in NIPS Workshop, 2016. arXiv: 1703.02910
[cs.LG].

[8] A. Gelman, J. B. Carlin, H. S. Stern, and D. B. Rubin, Bayesian
Data Analysis, third. Chapman and Hall/CRC, Oct. 2013.

[9] T. Haarnoja, A. Zhou, P. Abbeel, and S. Levine, “Soft actor-critic:
Off-policy maximum entropy deep reinforcement learning with a
stochastic actor,” in ICML, 2018. arXiv: 1801.01290 [cs.LG].

[10] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning
for image recognition,” in CVPR, 2016. arXiv: 1512 . 03385
[cs.CV].

[11] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep
network training by reducing internal covariate shift,” in ICML,
2015. arXiv: 1502.03167 [cs.LG].

[12] D. P. Kingma and J. L. Ba, “Adam: a method for stochastic
optimization,” in ICLR, 2015.

[13] A. Krizhevsky, “Learning multiple layers of features from tiny
images,” 2009, Technical Report.

[14] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classifi-
cation with deep convolutional neural networks,” in NIPS, 2012.

[15] X. Li and Y. Guo, “Adaptive active learning for image classification,”
in CVPR, 2013.

[16] D. Mahajan, R. Girshick, V. Ramanathan, K. He, M. Paluri, Y. Li,
A. Bharambe, and L. van der Maaten, “Exploring the limits of
weakly supervised pretraining,” in ECCV, 2018. arXiv: 1805 .
00932 [cs.CV].

[17] V. Mnih, K. Kavukcuoglu, D. Silver, A. A. Rusu, J. Veness, M. G.
Bellemare, A. Graves, M. Riedmiller, A. K. Fidjeland, G. Ostrovski,
S. Petersen, C. Beattie, A. Sadik, I. Antonoglou, H. King, D.
Kumaran, D. Wierstra, S. Legg, and D. Hassabis, “Human-level
control through deep reinforcement learning,” Nature, vol. 518,
no. 7540, pp. 529–533, Feb. 2015.

[18] H. Pham, M. Y. Guan, B. Zoph, Q. V. Le, and J., “Efficient neural
architecture search via parameter sharing,” in ICML, 2018.

[19] X. Qian and D. Klabjan, “The impact of the mini-batch size on the
variance of gradients in stochastic gradient descent,” arXiv e-prints,
Apr. 2020. arXiv: 2004.13146 [math.OC].

[20] A. Radford, J. Wu, R. Child, D. Luan, D. Amodei, and I. Sutskever,
“Language models are unsupervised multitask learners,” OpenAI
Blog, Feb. 2019.

[21] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma,
Z. Huang, A. Karpathy, A. Khosla, M. Bernstein, A. C. Berg, and L.
Fei-Fei, “ImageNet large scale visual recognition challenge,” IJCV,
vol. 115, no. 3, pp. 211–252, 2015. arXiv: 1409.0575 [cs.CV].

[22] S. R. S. and B. A. G., Reinforcement Learning: An Introduction,
2nd ed. The MIT Press, Nov. 2018.

[23] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprints, Jul.
2017. arXiv: 1707.06347 [cs.LG].

[24] B. Settles, Active Learning (Synthesis Lectures on Artificial Intelli-
gence and Machine Learning). Morgan & Claypool Publishers, Jun.
2012.

[25] S. Sharma, A. Jha, P. Hegde, and B. Ravindran, “Learning to multi-
task by active sampling,” in ICLR, 2018. arXiv: 1702.06053
[cs.NE].

[26] S. L. Smith and Q. V. Le, “A Bayesian perspective on generalization
and stochastic gradient descent,” in ICLR, 2018. arXiv: 1710 .
06451 [cs.LG].

[27] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Good-
fellow, and R. Fergus, “Intriguing properties of neural networks,” in
ICLR, 2014. arXiv: 1312.6199 [cs.CV].

[28] M. Tan and Q. V. Le, “EfficientNet: rethinking model scaling for
convolutional neural networks,” in ICML, 2019. arXiv: 1905 .
11946 [cs.LG].

[29] D. Ulyanov, A. Vedaldi, and V. Lempitsky, “Deep image prior,” in
CVPR, 2018. arXiv: 1711.10925 [cs.CV].

[30] H. van Hasselt, A. Guez, and D. Silver, “Deep reinforcement
learning with double Q-learning,” in AAAI, 2016. arXiv: 1509.
06461 [cs.LG].

[31] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N.
Gomez, L. Kaiser, and I. Polosukhin, “Attention is all you need,”
in NIPS, 2017. arXiv: 1706.03762 [cs.CL].

[32] T. Wang, J.-Y. Zhu, A. Torralba, and A. A. Efros, “Dataset distilla-
tion,” arXiv preprints, Nov. 2018. arXiv: 1811.10959 [cs.LG].

[33] S. Yun, D. Han, S. J. Oh, S. Chun, J. Choe, and Y. Yoo, “CutMix:
regularization strategy to train strong classifiers with localizable
features,” in ICCV, 2019. arXiv: 1905.04899 [cs.CV].

[34] H. Zhang, M. Cisse, Y. N. Dauphin, and D. Lopez-Paz, “mixup:
beyond empirical risk minimization,” in ICLR, 2018. arXiv: 1710.
09412 [cs.LG].

[35] B. Zoph and Q. V. Le, “Neural architecture search with reinforce-
ment learning,” in ICML, 2017. arXiv: 1611.01578 [cs.LG].

[36] B. Zoph, V. Vasudevan, J. Shlens, and Q. V. Le, “Learning transfer-
able architectures for scalable image recognition,” in CVPR, 2018.
arXiv: 1707.07012 [cs.CV].

